Algebra II Honors Equation Sheet

$\oint 2$

Slope: $\displaystyle\frac{y_1-y_2}{x_1-x_2}$

Slope$_{\perp}$: $\displaystyle m_2 = -\frac{1}{m_1}$

Y-Intercept form: $y=mx+b$

Standard form: $Ax+By=C \mid A,B,C \in \mathbb{Z}$

Point-Slope form: $(y - y_1) = m(x-x_1)$

Transformations using a parent graph: $g(x) = af(bx-h)+k$

Given a point on the parent graph, the point on the transformed graph is $\displaystyle \bigg( \frac{x+h}{b} , ay+k \bigg)$

Desmos Demo


$\oint 4$

Vertex form of a parabola: $(y-k) = a(x-h)^2$

Vertex x coordinate of a parabola: $\displaystyle h=\frac{-b}{2a}$

Quadratic Formula: $\displaystyle x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$

Standard form for a parabola: $f(x) = ax^2+bx+c$

Difference of squares: $a^2 - b^2 = (a+b)(a-b)$

Perfect Square Trinomial:

  • $a^2+2ab+b^2 = (a+b)^2$
  • $a^2-2ab+b^2 = (a-b)^2$

Sum/Difference of cubes:

  • $(a^3+b^3) = (a+b)(a^2-ab+b^2)$
  • $(a^3-b^3) = (a-b)(a^2+ab+b^2)$
  • SOAP: Same, opposite, always positive

$\oint 6$

iff $f(x) = x^2$, then $f^{-1}(x) = \pm\sqrt{x}$

iff $\displaystyle f(x) = 4x + 2$, then $\displaystyle f^{-1}(x) = \frac{x}{4} - \frac{1}{2}$

Square root function with transformations: $f(x) = a\sqrt{bx-h} + k$

See above for more information on transformations


$\oint 7$

Exponential growth: $\displaystyle A(t) = A_0(1+r)^t$

Exponential decay: $\displaystyle A(t) = A_0(1-r)^t$

Exponential growth/decay: $\displaystyle f(x) = a*b^{x-h}+k$

Compound Interest: $\displaystyle A(t) = P\Big(1 + \frac{r}{n}\Big)^{nt}$

Compound Interest (compounding continuously): $\displaystyle A(t) = Pe^{rt}$

Exponential growth with Euler: $\displaystyle f(x) = e^x$


$\oint 8$

Direct Variation: $y=kx$

Indirect Variation: $\displaystyle y=\frac{k}{x}$

Rational Function: $\displaystyle f(x) = \frac{p(x)}{q(x)}$

$\displaystyle y= \frac{ax+b}{cx+d}$

  • HA @ $\displaystyle y=\frac{a}{c}$
  • VA: Number that makes the bottom = 0

$\oint 9$

Midpoint: $\displaystyle \bigg( \frac{x_1+x_2}{2} , \frac{y_1+y_2}{2} \bigg)$

Distance Formula: $\displaystyle \sqrt{(x_2+x_1)^2 + (y_2+y_1)^2}$

Circle: $\displaystyle (x-h)^2 + (y-k)^2 = r^2$

Ellipse: $\displaystyle \bigg(\frac{x-h}{r_x}\bigg)^2 + \bigg(\frac{y-k}{r_y}\bigg)^2 = 1$

Focal distance for ellipses: $\displaystyle c^2 = big^2 - small^2$

Parabola focal distance: $\displaystyle a = \frac{1}{4p}$

Hyperbola:

$\displaystyle \bigg(\frac{y-k}{r_y}\bigg)^2 - \bigg(\frac{x-h}{r_x}\bigg)^2 = 1$

$\displaystyle \bigg(\frac{x-h}{r_x}\bigg)^2 - \bigg(\frac{y-k}{r_y}\bigg)^2 = 1$

Focal distance: $\displaystyle c^2 = big^2 + small^2$


$\oint 10$

$\displaystyle _nP_r = \frac{n!}{(n-r)!}$

$\displaystyle _nC_r = \frac{n!}{r!(n-r)!}$

Probability of event happening: $\displaystyle P(E) = \frac{n(E)}{n(S)}$

Probability: $\displaystyle P(\text{A or B}) = P(A) + P(B) - P(\text{A and B})$

Odds: $\displaystyle \frac{\text{number of possibilties where event happens}}{\text{number of possibilities where event doesn't happen}}$

Probability of a complement: $\displaystyle P(A^c) = 1 - P(A)$


$\oint 11$

Population standard deviation $\displaystyle \sigma = \sqrt{\frac{(x_1-\overline{x})^2 + (x_2-\overline{x})^2 + \cdots + (x_n-\overline{x})^2}{n} }$

Sample standard deviation $\displaystyle S_x = \sqrt{\frac{(x_1-\overline{x})^2 + (x_2-\overline{x})^2 + \cdots + (x_n-\overline{x})^2}{n-1} }$

Population Z-score: $\displaystyle z = \frac{x-\mu}{\sigma}$

Sample Z-score: $\displaystyle z = \frac{x-\overline{x}}{S_x}$


$\oint 12$

nth term of an arithmetic sequence: $\displaystyle t(n) = t(1) + (n-1)d$

nth term of a geometric sequence: $\displaystyle t(n) = t(1) * r^{n-1}$

Partial sum of an arithmetic series: $\displaystyle \sum_{i=1}^{n} t(i) = \bigg(\frac{n}{2}\bigg)(t_1+t_n) $

Partial sum of a geometric series: $\displaystyle \sum_{i=1}^n t(i) = t_1\bigg(\frac{1-r^n}{1-r}\bigg)$

if $0 < r < 1$ then the infinite sum exists: $\displaystyle \sum_{i=1}^\infty t(i) = \frac{t_1}{1-r}$


In [ ]: